
teacher.js: A low-bandwidth digital Tool for
Outdoor Online Teaching

Frederic Brodbeck
Digital Education

Berlin University of the Arts
Berlin, Germany

f.brodbeck@udk-berlin.de

Daniel Devatman Hromada
Einstein Center Digital Future
Berlin University of the Arts

Berlin, Germany
dh@udk-berlin.de

0000-0002-0125-0373

Abstract—teacher.js is a web-based digital communication
and teaching tool. Developed as part of the teacher.solar
project one of the main requirements was to keep both the
bandwidth and power consumption low. For that reason
teacher.js does not make use of screen sharing by means of
video streaming (which is very taxing in terms of data volume
and computation) but instead implements an event-driven
code-casting system, where events in the teacher’s client (e.g.
user interactions causing changes in the application state) are
broadcast to all other connected participants so that they stay
in sync. Besides audio / voice call functionality, the application
can be extended by integrating additional modules for all kinds
of different purposes. Currently there are a text chat module, a
presentation module, a Wikipedia module, and a collaborative
text editing module. The whole software suite can run on a
Raspberry Pi 4 microcomputer, allowing a teacher to be the
full master of the on-line teaching platform they are using to
give their courses. In comparison with BigBlueButton,
teacher.js consumes significantly less bandwidth for both
incoming and outgoing connections.

Keywords—code-casting, outdoor teaching, on-line teaching,
websockets, Matrix protocol, Raspberry Pi

I SCREENCASTING PARADIGM

As the COVID-19 pandemic took planet Earth by
surprise, educators swiftly adopted existing tools to transfer
at least a certain part of the teaching processes on-line. In
countries were network infrastructure allowed it, video-
conferencing tools like Jitsi, Webex, Teams, Zoom,
Hangouts, Skype or BigBlueButton (c.f. [1] for comparison
of these systems in educational settings) were suddenly
promoted from what they used to be before the pandemic –
i.e. mostly plain video-call and video-conferencing and
chatting tools – to instruments of teaching and learning alike.

An important feature which lead to the swift adoption of
above-mentioned tools in educational environments has been
the so-called “screen-sharing” function, allowing the
presentator users to broadcast content of their screen to all
other participants of the on-line session. In the weeks that
followed the first lockdowns, this so-called “screen-casting
paradigm” (SC-paradigm) had become a de facto standard in
real-time content sharing, with only few people questioning
whether the SC-paradigm is the most optimal way of doing
on-line teaching and if not, what alternatives exist. It turned
out that the SC-paradigm is sub-optimal at least in two major
regards:

 COSTLY: Encoding, streaming and decoding of
Megabytes of video signal to N participants incurs
significant network and processing costs and is not
feasible in low-bandwith areas or in use cases were
radical reduction of energy consumption is an issue.

 ASEMANTIC: The rich internal structure of many
screen-casted contents (presentation slides, web
documents etc.) is lost during its encoding into video
signals. Thus, both transmitter as well as receiver
devices are unaware of semantics and internal
structure of what is being broadcasted. This prohibits
viewers to execute any other interaction with the
content, apart from passive consumption (e.g.
students cannot click on the links displayed on a
screen-casted website, cannot search for a term in a
displayed text document, increase the font size, etc.).

II CODECASTING PARADIGM

Codecasting (CC, shortened form of "code-
broadcasting") is the distribution and execution of
program code snippets and associated data forwarded
from the source (e.g. teacher) viewport to one or multiple
target viewports (e.g. student browsers).

Thus, instead of SC-based systems, which transfer data
encoding the visual signal, CC-based systems transfer
following the CC-formula:

high-level representation (e.g. HTML, SVG, MIDI etc.) of
document D

+

code to render or transform D in a manner satisfying
constrains C1, C2 … CN

Note that the idea of streaming code juxtaposed to data is far
from being new. From ANSI and ECMA-48 escape codes [2]
shells for mobile clients [3] to graphic primitives of Virtual
Network Computing (VNC) [4], the history of information
and communication technologies (ICT) abounds in more or
less high-level examples of the CC-paradigm.

Still, aside from some lesser-known features such as, for
example, the “share external video” function in
BigBlueButton which allows the presenter to point viewer
browsers to an external video URL, giving freedom to move
through their video on their own pace while receiving
play/pause/rewind commands from the presenter; and aside
from some experimental teaching concepts in collaborative
coding or editing by means of platforms like Etherpad [5],
CoLab or Overleaf, the CC-paradigm has not yet achieved its
full potential in the domain of on-line learning.

The aim of the teacher.js project is to fill this gap by
using web browser environment as the rendering engine and
JavaScript as code-casted language.

III TEACHER.SOLAR & TEACHER.JS

III.A Teacher.solar

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

teacher.solar [6] is an experimental initiative to take
teaching outside. That is in part motivated by trying to reduce
the negative side-effects of spending long periods of time
indoors (vitamin D deficiency, CO2 having negative impact
on the ability to concentrate and think, bad body posture
from sitting in front of a computer all day, increased risk of

1 Magic Wand 0 artefact [6] and associated e-ink screens were solar-
powered devices to run and/or communicate with the teacher.js software.

burn-out). At the same time it is an opportunity to reduce the
carbon footprint of one’s digital activities by harnessing solar
energy; taking a step closer towards CO2 neutrality. E-ink
displays perform well in daylight / in the sun and in addition
to that are much more energy efficient than other display
technologies. Similarly employing lower-end portable
devices reduce energy consumption even further. This is why
both of them play a central role in the project.

III.B Teacher.js

teacher.js is the accompanying web app used in the
teacher.solar project. It is taylored to the project to a certain
degree in that it aims for keeping bandwidth and power
consumption low. At the same time it is deliberately kept as
simple as possible with the possibility to be extended in the
future in mind. Instead of re-inventing the wheel as a
monolithic custom application, teacher.js loosely integrates
existing (open source) solutions by incorporating these
existing tools and libraries as modules in the user interface of
the application.

2 teacher.js interface running the Wikipedia module.

IV CONCEPT

In line with the idea of minimizing the resources used,
teacher.js refrains from using video streaming. Instead of
broadcasting the instructor’s screen as a video capture, the
application uses an event-based system that only sends

notifications about state changes (very small pieces of JSON
data) to rest of the connected clients. Such events include
moving to the next slide (in the context of a presentation),
activating a different content module, navigating to a
Wikipedia page or jumping to a specific section within an
article, for instance.

V HARDWARE

Figure 1. displays photo of the Magic Wand 0 [7] artefact
which the authors of this article used in the summer 2020 to
give their experimental outdoor online teaching course titled
“Design & Deployment of solar-powered artefact”.

In its current state the hardware setup used is based on the
Raspberry Pi 4 platform in combination with an optional 4G
extension module for mobile data connectivity. Mobile data
is associated to a fixed IP address, allowing the teacher to
roam freely with their “portable server”. Inversely the device
can also act as a WLAN access point and DNS server for
students which makes the system useful for creation of LAN
zones in hybrid digital outdoor teaching scenarios. The
system is powered by a solar power-bank which can be
additionally charged by a solar backpack. All software
needed for running teacher.js is installed and running on the
Raspberry Pi itself.

VI ARCHITECTURE

VI.A Server

The server component is a custom Node.js application
fulfilling multiple roles:

A.1 Websocket server
The websocket server holds the global application state

and relays state update messages between clients.

A.2 Proxy server
Frontend modules are embedded via <iframe> elements.

The proxy server is used to get around any CORS (Cross-
Origin Resource Sharing) restrictions, but also to inject
custom code snippets into the page. Those are needed to
enable cross-site communication between the iframe and the
host application via the postMessage() method1.

VI.B Audio conference

Next to the server script the device also hosts an instance
of the Janus WebRTC server [8]. The audio conference is
implemented using the official Audiobridge plugin2 and
JavaScript library3.

VI.C Frontend

The frontend / GUI is a single-page web application
(SPA) written in TypeScript. We chose the Svelte4 framework
over React as it is both smaller in size and also less
computationally expensive. While React (with its virtual
DOM diffing approach) does most of its work at runtime,
Svelte’s approach does the heavy lifting during the build
stage, which means the computational load on the individual
clients is reduced.

1 https://developer.mozilla.org/en-US/docs/Web/API/Window/
postMessage

2 https://janus.conf.meetecho.com/docs/audiobridge.html

3 https://janus.conf.meetecho.com/docs/JS.html

4 https://svelte.dev/

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://svelte.dev/
https://janus.conf.meetecho.com/docs/JS.html
https://janus.conf.meetecho.com/docs/audiobridge.html

Fig. 3. teacher.js architecture

VII MODULES

VII.A Chat

Text chat is implemented using the Matrix protocol. Of
the currently available web-based matrix clients we chose
Hydrogen5 over Element6 because it is more lightweight. The
Hydrogen source code was slightly modified for the purpose
of being embedded in teacher.js, most notably by adding the
functionality for extracting the user’s Matrix user name to be
used in the teacher.js interface.

VII.B Presentation

The JavaScript snippet injected by the proxy server adds
a hook that reacts to changes in the presentation state, which
in turn notifies the host application about them. Presentations
which are currently supported are web-based presentations
generated by means of JavaScript frontend libraries like
deck.js, impress.js or reveal.js. The backend for these
presentations is our own knowledge management system
(KMS) Kastalia which is to be introduced in our next article.

VII.C Wikipedia

For the purpose of making optimal use of the screen real
estate, the layout of embedded Wikipedia articles is slightly
adjusted to remove the navigation side bar and extra spacing.
Furthermore the page is enhanced with functionality to detect
navigation events (when links are clicked), and to determine
which section of the article is currently visible in the
viewport, so that the instructor can direct the students to
specific parts of the article. Visited wikipedia articles and
associated media files are cached locally by means of a web-
server reverse proxy7. This allows the teacher to reuse the
cached material even in an oline outdoor teaching scenario in
absence of any Internet connection.

VII.D Collaborative text editing

teacher.js embeds an Etherpad-Lite8 instance of the
Etherpad collaborative editing tool [5], which is running on
the same device. No further modifications were needed.

VII.E Replaying sessions

Optionally, there is the possibility to record a session (to
be replayed at a later time). For this the audio conference is
saved to a file, and relevant events are time-stamped and
logged to a file on the server. In addition to this any action of
the instructor relating to a public URL (such as opening a
presentation, opening a chat room, navigating to a Wikipedia
article, etc.) will cause a link to said URL to automatically be
posted to a predefined Matrix room.

VIII COMPARISON: BIGBLUEBUTTON VS. TEACHER.JS

In an experimental test run we recorded the rates of
incoming and outgoing data to / from the BigBlueButton
server of the Magic Wand artefact running teacher.js. With 4

5 https://github.com/vector-im/hydrogen-web

6 https://element.io/

7 https://github.com/pirate/wikipedia-mirror

8 https://etherpad.org/

clients connected we simulated a short teaching session,
which included common activities, such as N-to-N voice
chat, going through presentation slides, as well as opening
and scrolling though a few Wikipedia articles.

Fig. 5. Averaged results of teacher.js / BigBlueButton comparison.

Fig. 4. Comparison of the incoming / outgoing date transfer rates

As expected, these preliminary results show a lower
average data transfer rate (and therefore lower total amount
of data transmitted) for teacher.js – in both the incoming and
outgoing direction:

It is important to realize that should the teacher.js device
store its own copy of Wikipedia or other external assets
which would be subsequently relayed to student browsers
during teaching sessions, the outcoming bandwidth could be
even more reduced.

IX CONCLUSION

In this paper we introduce teacher.js, a modular online
teaching tool that aims for low bandwidth consumption for
use cases with restricted connectivity and power resources.
We present the results of measuring the data transfer rates in
a comparison with BigBlueButton, one of the established
video conferencing / screen sharing tools, showing
significantly less data transferred in the case of teacher.js.

More importantly, by implementing codecasting which
keeps interactivity, structure, and semantics of the shown
content intact, teacher.js is able to provide functionalities and
characteristics which no other on-line learning system known
to us currently provides. Appendix I. enumerates most
salient among such “unique” functionalities and
characteristics which are already implemented, Appendix II.
enumerates additional ideas which will be implemented in
next iteration (v0.2) of the project.

Teacher.js is available under MIT licence at our GitHub
repository9 and everyone is welcome to join us.

9 https://github.com/freder/teacher.js

https://github.com/freder/teacher.js
https://etherpad.org/
https://github.com/pirate/wikipedia-mirror
https://element.io/
https://github.com/vector-im/hydrogen-web

ACKNOWLEDGMENT

We thank the Stifterverband and Baden-Württemberg
Stiftung for the attribution of the Senior Fellowship in High-
School Education which lead to emergence of the
teacher.solar and teacher.js projects.

APPENDIX I. UNIQUE CHARACTERISTICS ALREADY
IMPLEMENTED IN TEACHER.JS V0.1

 Whenever the teacher enters the new document D (e.g.
new slide, article, article section etc.) all students
viewports load D as well.

 However, when the teacher is not broadcasting any event
(e.g. “load new D”) students are free to roam within D,
look for keywords, scroll up and down, copy parts of the
document and paste them into their other apps etc.

 Students can also apply visual and design modifications
of D – e.g. increase in font size, colors, font types,
zooming in & out etc. - the final layout of the document
D is responsive to viewer’s and not the presentator’s
viewport.

 Mono-tasking [6, p.5] is implemented to avoid
unnecessary distraction of the learning process. Chatting
parallel to presentation is disallowed, it is the teacher who
can bring the student browsers from presentation mode to
chat mode or vice versa.

 To avoid any further distractions due to gossip or other
secretive behaviours which may potentially reduce the
teacher’s authority or disrupt the educational process in a
different way, the Matrix classroom associated to the
teaching session is public and transparent for inspection
to all its present and potentially also future visitors.

 The principle of 1 teacher – 1 classroom – 1 server is
applied. Similar to a teacher being responsible for
everything which happens in a physical classroom during
their class, the person who unlocks the door of a
teacher.js space is both a teacher, administrator of the
local temporary zone and keymaster in the same time.

 The session replay functionality allows one to re-enact
the original on-line teaching experience even aeons after
teacher or students already passed away.

APPENDIX II. UNIQUE CHARACTERISTICS TO BE
IMPLEMENTED IN TEACHER.JS V0.2

 Aside teacher.js, Kastalia KMS, and Janus, the Matrix
homeserver is to run directly on teacher’s device. Should
the corresponding chatroom be marked as “federated”, its
content will automatically replicate and synchronize with
nodes of other teachers.

 Modules for synchronized reading and singing and other
collaboratively orchestrated activities.

 Lack of video-streams from students’ or teacher’s
webcams is to be partially resolved by modules
performing client-side detection of facial keypoints, their
subsequent broadcasting and dynamic avatar face
synthesis.

REFERENCES

[1] N. Cavus and D. Sekyere-Asiedu, “A comparison of online video con-
ference platforms: Their contributions to education during COVID-19
pandemic,” World J. Educ. Technol. Curr. Issues, vol. 13, no. 4, pp.
1162–1173, 2021.

[2] “ECMA-48,” Ecma International. https://www.ecma-
international.org/publications-and-standards/standards/ecma-48/ (ac-
cessed Jan. 31, 2022).

[3] K. Winstein and H. Balakrishnan, “Mosh: An interactive remote shell
for mobile clients,” in 2012 USENIX Annual Technical Conference,
2012, pp. 177–182.

[4] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Vir-
tual network computing,” IEEE Internet Comput., vol. 2, no. 1, pp.
33–38, 1998.

[5] A. Erdal and S. S. Seferoglu, “Using EtherPad for online collaborative
writing activities and learners with different language learning strate-
gies,” Eurasian J. Appl. Linguist., vol. 3, no. 2, pp. 205–233, 2017.

[6] D. D. Hromada, “Teacher. solar:: open source/hardware toolbox for
CO2-neutral online outdoor teaching.” https://teacher.solar/entwur-
f.pdf (accessed Jan. 31, 2022)

[7] D. D. Hromada, “Three principles (and 2 sub-principles) for harm
minimization and prevention of technological addiction in human
children,” Educ. Innov. Emerg. Technol., vol. 1, no. 1, 2022.

[8] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Janus: a
general purpose WebRTC gateway,” in Proceedings of the Conference
on Principles, Systems and Applications of IP Telecommunications,
2014, pp. 1–8.

	I Screencasting paradigm
	II CODECASTING PARADIGM
	III Teacher.solar & Teacher.js
	III.A Teacher.solar
	III.B Teacher.js

	IV Concept
	V Hardware
	VI Architecture
	VI.A Server
	A.1 Websocket server
	A.2 Proxy server

	VI.B Audio conference
	VI.C Frontend

	VII Modules
	VII.A Chat
	VII.B Presentation
	VII.C Wikipedia
	VII.D Collaborative text editing
	VII.E Replaying sessions

	VIII Comparison: BigBlueButton vs. teacher.js
	IX Conclusion
	Acknowledgment
	APPENDIX I. UNIQUE characteristics ALREADY IMPLEMENTED IN teacher.js v0.1
	APPENDIX II. UNIQUE characteristics TO BE IMPLEMENTED IN teacher.js v0.2
	References

