In: James R. Newman, The World of Mathematics, Volume III., Part VIII, Statistics and the Design of Experiments (New York: Simon \& Schuster, 1956), pp. 1514-1521.

6 Mathematics of a Lady Tasting Tea

By SIR RONALD A. FISHER

STATEMENT OF EXPERIMENT

A LADY declares that by tasting a cup of tea made with milk she can discriminate whether the milk or the tea infusion was first added to the cup.' We will consider the problem of designing an experiment by means of which this assertion can be tested. For this purpose let us first lay down a simple form of experiment with a view to studying its limitations and its characteristics, both those which appear to be essential to the experimental method, when well developed, and those which are not ameatial but auxiliary.

Our experiment consists in mixing eight cups of tea, four in one way and four ia the other, and presenting then to the subject for judgment in a random order. The subject has been told in advance of what the test will consist, namely that she will be asked to taste eight cups, that these shall be four of each kind, and that they shall be presented to her in a random order, that is in an order not determined arbitrarily by human choice, bur by the actual manipulation of the physical apparatus used in games of chance, cards, dice, soulettes, etc., or, more expeditiously, from is polished collection of rindom sampling numbers purporting to give the setula results of such manipulation. Her task is to divide the 8 cups into 'twoisets of 4, agreeing, if possible, with the treatments received.

interpretation and its reasoned basis

In considering the appropriateness of any proposed experimental design. it is always needful to forecast all possible results of the experiment, and
to have decided without ambiguity what interpretation shall be placed upon each one of them. Further, we must know by what argument this interpretation is to be sustained. In the present instance we raay argue as follows. There are 70 ways of choosing a group of 4 objects out of 8 . This may be demonstrated by an argument familiar to audents of "permutations and combinationa," namely, that if we were to choose the 4 objects in succession we should have succesaively 8,7,6,5 objects to choose from, and could make our suceession of choikes in $8 \times 7 \times 6 \times 5$, or 1680 waya. But in doing this we have not only choven every poasible set of 4, but every possible set in every posible order; and sioce 4 objects can be arranged in order in $4 \times 3 \times 2 \times 1$, or 24 wayn, we may find the number of possible ehoices by dividing 1600 by 24 . The resulh, 70 , is essential to our interpretation of the experiment. At beat the subject can judge rightly with every eup and, knowiag that 4 are of each kind, this amounts to choocing, out of the 70 sets of 4 which might be chowen, that particular one which is correct. A aubject withour any faculty of discrinaimation would in fact divide the 8 eups correctly tato two sen of 4 in one trial out of 70, or, more properly, with a frequency which would espromeh 1 in 70 more and more nearly the aore often the tea were repeated. Evideally this frequency, with which unfailing success would be achieved by a person lacking allogether the faculiy uoder tex, is calculable from the number of cups used. The odds could be made much higher by enlarging the experiment, while, if the experimeat were much emalker even the greatest pourible success would give odds so low that the reault might, with considerable probability, be sacribed to chance.

THA TEIT OP EMNIFICANCE
It in open to the experimenter to be more or leas exacting in reapect of the anallisesp of the probebitity be would require before be would be williag to adruit that his obecrvations have demonstrated a poditive result. It is obvious that an experiment would be useless of which no possibte result would satisfy him. Thes, tit be wiathes to ignore results having probabilities as high as 1 in 20 --the probabilities being of course reckooed from the hypothesis that the pheoomenon to be demonatrated is in fact absent-then it would be melews for him to experiment with caly 3 'cups of tea of each kind. For 3 objects can be chosen out of 6 in oaly 20 ways and therefore complete success is the test would be achieved without sensory discrimination, i.e., by "pure chance," it a average of 5 triak oux of 100 . It is usual and coavenient for experimenters to take 9 per cent. as a atandard level of significance, in the sense that they are prepared to ignore all results which fail to reach this standird, and, by this means, to eliminate from further discuation the greater part of the fuctu-
dioas which chance causea have introduced into their experimental reauth. No suct selection can eliminate the whole of the possible effects of chance coiscidence, and if we accept this convenient convention, and apree that 20 event which would occur by chance only once in 70 trials is decidedly "aignificant"" in the atatistical sense, we thereby admit that so bsolated experiment, bowever significant in itself, can suffice for the experimental demoantration of any natural phenomenon; for the "c ne chance ia a million" will undoubredly occur, with no leas and no more then ita appropriate frequency, however surprised we may be that it abould occur to us. In order to aseert that a nalural phenomenon is exparimentally demonstrable we need, not an isolated record, but a reliable method of procedure. In relation to the teat of significance, we may say that a phenomenon is experimentally demonstrable when we know how 10 conduat an experimeat which will rarely fail to give us a satistically signifcapt remult.

Returaing to the pomible results of the paycho-physical experiment, beving decided that if every cup were rigtuly cisesibed a significant poaitive result would be recorded, or, in other worde, that we ahould admit that the lady had made good her ciaim, what atould be our conclusion if, for each kind of cup, her judgments are 3 right and 1 wrong? We may take it, in the present discussion, that any error in one set of judgments will be compensated by an error in the other, since it is known to the aubject that there are 4 cups of each kind. In enumerating the number of ways of choosing 4 things ous of 8 , such that 3 are right and 1 wrong. we may note that the 3 right may be chosen, out of the 4 availabte, in 4 ways and, independently of this choice, that the 1 wrong may be chosen. out of the 4 svailable, also in 4 ways. So that in all we could make a metection of the kind auppowed in 16 different ways. A similar argument shows then, in each kind of judgment, 2 may be righe and 2 wrong in 36 wayn 1 right and 3 wrong in 16 ways and nooe right and 4 wrong in I way caly. It should be aoted that the frequencies of these live possible moults of the experiment make up together, at it is obvious they sbould, twe 70 cases out of 70.

It in abvious, too, thet 3 wecesses to 1 failure, although showing a bias, or deviation, in the righe direction, could not be judged as salastically ipalifesat evidence of a real sensory discrimiastion. For its frequency of chapce occurrence is 16 in 70, or more than 20 per cent. Moreover, it is not the beat posibte result, and in judging of its signifcance we must take scocunt not only of its own frequency, bue also of the frequency for any better reault. In the present instance "3 right and 1 wrong" occurs 16 timen, and "4 righ" oceurs once in 70 trials, making 17 cases out of 70 a sood as or better than that observed. The reason for inctuding cases better than that observed becomes obvious on considering what our con.
clusions would have been had the case of 3 right and 1 wrong only 1 chance, and the case of 4 right 16 chances of occurrence out of 70 . The rare case of 3 right and 1 wrong could not be judged significant merely because it was rare, seeing that a higher degree of success would frequently have been scored by mere chance.

THE NULL HYPOTHEAS

Our examination of the posaible resulta of the experiment has therefore led us to a statistical test of significance, by which these results are divided into two classes with oppowed interpretations. Tests of gignificance are of many different kinds, which need not be considered bere. Here we are only concerned with the fact that the easy calcuiation in permurations which we encountered, and which gave ve our test of signisfance, stands for something preseat in every powible experimental arragement; or, at feast, for something required in its interpretatica. The two ciasmes of reaults which are distinguiahed by our test of signibicance are, on the one hand, thoce which show a significat discrepancy from a certuin bypothesis; namety, in this case, the bypothesis that the judgmenta giveo are in no way influenced by the order in which the ingredients have been added; and on the other haod, reaults which show no signiticant discrepancy from this hypothesia. This hypotbesis, which may or may not be impugned by the result of an experiment, is again characteriatic of all experimentation. Much confusion would often be avoided if it were ex. plicitly formulated when the experiment is dexizned. In relation to any experiment we may apeak of thin hypotbesis as the "null hypothesis," and it should be noted that the aull hypotbesis is never proved or extablisbed, but is posesty dieproved, in the cource of experimentation. Every expert ment may be said to exim ouly in order to give the facts a chance of dieproving the sull hypotbein.

It might be argued then if an experiment can difprove the hypolbesis thet the subject poseswes wo seneory discrimination between two different sorts of object, it mum therefore be able to prove the oppocite hypothesis, that she can make sonne moct ciecrimination. Bur this last bypothesis, bowever reasonable or true in anay be, in ineligible, as a null hypotbesis to be tested by experimeat, becaure in in inexsct. If it were asserted that the subfect would never be wrong in ber judgments we ahould again have an exact hypothesis, and it in easy to see that this hypothesis could be diaproved by a singte failure, betcould never be proved by any anite amount of experimentation. It is evident that the null hypotbesis must be exact. that is free from vagueness and ambiguity, because it must supply the basis of the "probtem of diatribution," of which the tex of signikcance is the solution. A null hypothesis may, indeed, contain artitrary elements,
and in more complicated cases often does so: as, for example, if it should assert that the death-rates of iwo groups of animals are equal. wibout specifying what these death-rates usually are. In such cases it is evidently the equality rather than any paricular values of the death-rates that the experiment is deaigned to test, and possibly to disprove.

Ia cases involving statistical "estimation" these ideas may be extended to the simultaneous consideration of a series of hypothetical possibilities. The notion of an error of the so-called "second kind," due to accepting the null hypothesis "when it is false" may then be siven a meaning in reference to the quantity to be estimated. It has no meaning with respect to siraple teats of significance, in which the only available expectations are thow which thow from the null hyporheris being true.

RANDOMEATKON; THE PHYSACAL GASAS OF THE VALDOTY OF THE TEST

We bave apoken of the experiment as testing a certain null hypothesis, manaly, in this case, that the subject possesses no sensory discrimination whatever of the kind ctaimed; we have, 100 , assigned as appropriate to this hypothesis a certain frequency distribution of occurrences, based on the equal frequency of the 70 possible ways of assigning 8 objects to two classes of 4 each; in other words, the frequency distribution appropriate to a clasitication by pure chance. We have now to examine the physical coaditions of the experimental technique needed to justify the assumption that, if discrimination of the kind under test is abvent, the result of the experiment will be wholly governed by the laws of chance. It is easy to we that it might well be orherwise. If all those cups made with the milk Arat had sugar added, while those made with the lea first had none, a wery obvious difference in flavour would have been introduced which mighe well ensure that all thove made with sugar should be classed alike. Thae groups might either be classified all right or all wrong, but in such a ease the frequency of the critical event in which all cups are classified corscetly would not be 1 in 70 , bur 35 in 70 triats, and the test of sig. atsence would be wholly vitiated. Errors equivalent in principle to this are very frequently incorporated in ohberwise well-designed experiments.

It is wo amoient remedy to insigt that "all the cups must be exactly atise" in every rexpect except that to be tested. For this is a totelly im. posable requirement in our example, and equally in all other forms of experimentation. In practice it is probabie that the cups will differ per. capcibly in the thickness or smoothness of their material, that the quan. thites of milk added to the different cups will not be exactly equal, that the atrength of the infusion of tea may change between pouring the first and the last cup, and that the temperature also at which the tea is tasted will change during the course of the experiment. These arc only examples
of the differences probably present; it would be impossible to present an exhaustive list of such possible differences appropriate 10 any one kind of experiment, because the uncontrolled causes which may influence the result are always strictly innumerable. When any such cause is named, it is usually perceived that, by increased labour and expense, it could be largely eliminated. Too trequently it is assumed that such refinements constitute improvements to the experiment. Our view, which will be much more fully exemplified in later sections, is that it is an essential characteristic of experimentation that it is carried out with limited resources, and an essential part of the subject of experimental deajen to ascertain how these should be beat applied; or, in particular, to which causes of disturbance care should be given, and which ought to be deliberately ignored. To ascertain, too, for those which are not to be ignored, to what extent it is worth while to take the trouble to diminith their magnitude. For our present purpose, however, it is only necessary to recognise that, whatever degree of care and experimental skill is expended in equalising the conditions, other than the one under teat, which are liable to affect the result, this equalisation must always be to a greater or less extent incomplete, and in many important practical cases will certainly be grossly defective. We are concerned, therefore, that this inequality, whether it be great or small, shall not impugn the exactitude of the frequency distribution, on the basis of which the result of the experiment is 10 be appraised.

THE EFFECTIVENESS OF RANDOMISATBON

The element in the experimental procedure which contains the essential safeguard is that the two moditications of the tea beverage are to be prepared "in random order." This, in fact, is the only poial in the experimenal procedure in which the laws of chance, which are to be in exclusive control of our frequency distribution, have been explicitly introduced. The phrase "random order" itself, however, must be regarded as an incomplete instruction, sanding as a kind of shorthand symbol for the full procedure of randomisation, by which the validity of the test of significance may be guaranteed againat corruption by the causes of dislurbance which have not been eliminated. To demonatrate that, with satisfactory randomisation, its validity in indeed, wholly unimpaired, let us imagine all causes of diaturbance-the strength of the infusion, the quantity of milk, the temperature at which it is tasted, etc-to be predelermined for each cup; then since thexe, on the null bypothesis, are the only causes infuencing classification, we may say that the probabilities of each of the 70 possible choices or classifications which the subject can make are also predetermined. If, now, after the disturbing' causes are fixed, we issign, sirictly at random, 4 out of the 8 cups to esch of our
experimental treatments, then every set of 4. whatever its probability of being 20 clasaibed, will certainly have a probability of exactly 1 in 70 of being the 4, for example, to which the milk is added first. However im. portant the causes of disturbance may be, even if they were to make is certain that one particular set of 4 should receive this cisssificalion, the probability that the $4 s 0$ classifled and the 4 which ought to have been so clasitied ahould be the amme, must be rigorowaly in accordance with our test of rignificance.

It is apparent, therefore, that the random choice of the objects to be treated in different ways would be a complete guarantee of the validity of the teat of significance, if these treatments were the last in time of the cages in the physical history of the objects which might affect their experimental reaction. The circumstance that the experimental Ireatments canoct always be applied lass, and may come relatively early in their bivory, causes no practical inconvenience; for subsequent causes of differentiation, if under the experimenter's coosiod, as, for example, the cboice of different pipettes to be used with different fiasks, can either be prodetermined before the treatments have been randomised, or, if this has sod been done, can be randomised on their own sccount; and orher causes of differeatiation will be either (a) consequences of differences already randomised, or (b) natural consequences of the difference in treatment to be texted, of which on the null hypothesis there will be none, by defisition, or (c) effects supervening by chance independently from the treatments applied. Apart, therefore, from the avoidable error of the experimenter himself introducing with his teat treatmente, or subsequently. other differences in treatment, the effects of which the experiment is not imended to study, it may be said that the simpte precaution of randomisa. tion will arnce to guarantee the validity of the test of significance, by which the result of the experiment is to be judged.

THE SENSTTVENESS OF AN EXPERIMENT. EFFECTS OF ENLAROEMENT AND REPETTTION

A probable objection, which the subject mighe well make to the experimeat 50 far described, is that only if every cup is classifted correctly will she be judged successful. A single mistake will reduce her performance below the level of significance. Her claim, however, might be, not that she could draw the distinction with invariable certainty, but that, though cometimes mistaken, she would be right more often than nor; and that the experiment should be enlarged sufficiently, or repeated sufficiently often, for her to be abte to demonstrate the predominance of correct clactibeations in spile of occasional errors.

As extension of the calculation upon which the test of signifcance was
2501072086
based shows that an experiment with 12 cups, six of each kind, gives, on the null hypothesis, 1 chance in 924 for complete success, and 36 chances for 5 of each kind classified right and 1 wrong. As 37 is less than a tweatieth of 924, such a leat could be counted as significant, although a pair of cups have been wrongly classified; and it is easy to verify that, uaing larger numbers still, a significant result could be obtained with a still higher proportion of errors. By increasing the size of the experiment, we can render it more sensitive, meaning by this that it will allow of the detection of a lower degree of sensory discrimination, or, in other words, of a quantitatively smaller departure from the null hypothesis. Since in every case the experiment is capable of disproving, but never of proving this hypothesis, we may ayy that the value of the experiment is increased whenever it permits the null hypothesis to be more resdily diaproved.

The aame reault could be achieved by repeating the experiment, as originally dexigned, upon a number of different occasions, counting as a sucess all those occasions on which 8 cups are correctly clasaifed. The chance of succers on each occasion being 1 in 70, a simple application of the theory of probsbility shows that 2 or more successes in 10 trials would oceur, by chance, with a frequeacy betow the standard choven for testing significance; so that the sensory discrimination would be demonstrated, although, in 8 attempts out of 10 , the subject made one or more mistaken. This procedure may be regarded as merely a second way of ealarging the experiment and, thereby, increasing its sensitiveness, since in our final calculation we take sccount of the aggregale of the entire series of resulth, whether successful or unsuccessful. It would clearly be illegitimate, and would rob our calculation of its basis, if the unsuccessful results were not all brought into the scocount.

qualutative methoo of moneanno senstivenees

Indead of enlarging the experiment we may attempt to increase its sensitivenest by qualitative improvements; and these are, generally speakiag. of two kinds: (a) the reorganisation of its structure, and (b) refinements of lectnique. To itluetrate a change of aructure we might consider that, inatead of sxing in advence thet 4 cups should be of each kind, deharnining by a random process how the subdivision should be effected, 'we might have aflowed the treatment of each cup to be determined independently by chance, as by the toss of a coin, so that each treatment has an equal change of being chosen. The chance of classifying correctly 8 cupe rasdomised in this way, without the aid of sensory discrimination, is 1 in 2°, or 1 in 256 chances, and there are orly 8 chances of classifying 7 right and 1 wrong; consequently the sensitiveness of the experiment has been increased, while atill using only 8 cupp, and it is posible to ecore a
signiskant success, even if one is classified wrongly. In many types of ex. periment, therefore, the suggested change in structure would be evidently advantageous. For the apecial requirements of a paycho-physical experimeat, bowever, we should probably prefer to forego this advantage, since it would oceasionally occur that all the cups would be treated alike, and thia, besides bewildering the subject by an unexpected occurrence, would deny ber the real advantage of judging by comparison.

Angher possibte alteration to the aructure of the experiment, which would, however, decresse its sensitiveness, would be to present determiced, but unequal, numbers of the two treatments. Thus we migh arreage that 5 cups should be of the one kind and 3 of the other, choosing them properly by chance, and informing the subject how many of each to expect. But since the number of ways of choosing 3 things out of 8 in oaly 56, there is now, on the null hypothesis, a probability of a comptetely correct classification of 1 in 56 . It appears in fact that we cannot by these means do better than by presenting the two treatments in equal aumbers, and the choice of this equality is now seen to be juaified by its siviag to the experiment its maximal sensitiveness.

With respect to the refinements of tectnique, we have seen above that these conaribute nothing to the validity of the experiment, and of the lest of significance by which we determine its result. They may, however, be important, and even essential, in permitling the phenomenon under test t manifeat itself. Though the test of significance remains valid, it may be that wihhour special precautions even adefinite sensory discrimination would have little chance of scoring a significant success. If some cups were made with India and some with China tea, even though the treatments were properly randomised, the subject might not be able to discriminate the relatively amall difierence in fiavour under investigation. whea it was confused with the greater differences beetween leaves of diffarean origim. Obviously, a similar dificully could be introduced by using in some cupa raw milk and in others boiled, or even condensed milk, or by adding sugar in unequal quantities. The subject has a right to claim. and in in in the interents of the sensitiveness of the experiment, that gross eliferences of these kinds should be excluded, and that the cups should; cot a far as possible, bur as far as is practically convenient, be made athe in ell reapects except that under test.

How far such experimental refirements should be carried is entirely a matter of judgment, based on experience. The validity of the experiment in aor affected by them. Their sole purpose is to increase its sensitiveness. and thia object can usually be achieved in many other ways, and particulerty by increasing the size of the experiment. If, therefore, it is decided that the sensitiveness of the experiment should be increased, the experi-
menter has the choice between different methods of obtaining equivalent results; and will be wise to choose whichever method is easiest to him, irrespective of the fect that previous experimenters may have tried, and recommended as very important, or even essential, various ingenious and troublesome precautions.

