Simulated annealing Wed, 22 Jun 2022 09:13:48 GMT 2022-06-22T09:13:48Z <b style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">Simulated annealing</b><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);"> (</span><b style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">SA</b><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">) is a </span><a href="https://en.wikipedia.org/wiki/Probabilistic_algorithm" class="mw-redirect" title="Probabilistic algorithm" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">probabilistic technique</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);"> for approximating the </span><a href="https://en.wikipedia.org/wiki/Global_optimum" class="mw-redirect" title="Global optimum" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">global optimum</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);"> of a given </span><a href="https://en.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics)" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">function</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">. Specifically, it is a </span><a href="https://en.wikipedia.org/wiki/Metaheuristic" title="Metaheuristic" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">metaheuristic</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);"> to approximate </span><a href="https://en.wikipedia.org/wiki/Global_optimization" title="Global optimization" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">global optimization</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);"> in a large </span><a href="https://en.wikipedia.org/wiki/Solution_space" class="mw-redirect" title="Solution space" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">search space</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);"> for an </span><a href="https://en.wikipedia.org/wiki/Optimization_problem" title="Optimization problem" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">optimization problem</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">. It is often used when the search space is discrete (e.g., the </span><a href="https://en.wikipedia.org/wiki/Traveling_salesman_problem" class="mw-redirect" title="Traveling salesman problem" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">traveling salesman problem</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">). For problems where finding an approximate global optimum is more important than finding a precise local optimum in a fixed amount of time, simulated annealing may be preferable to exact algorithms such as </span><a href="https://en.wikipedia.org/wiki/Gradient_descent" title="Gradient descent" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">gradient descent</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">, </span><a href="https://en.wikipedia.org/wiki/Branch_and_Bound" class="mw-redirect" title="Branch and Bound" style="text-decoration-line: none; color: rgb(11, 0, 128); background: none rgb(255, 255, 255); font-family: sans-serif; font-size: 14px;">Branch and Bound</a><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);">.</span><div><span style="color: rgb(32, 33, 34); font-family: sans-serif; font-size: 14px; background-color: rgb(255, 255, 255);"><br></span></div><div><span style="background-color: rgb(255, 255, 255);"><font color="#202122" face="sans-serif"><span style="font-size: 14px;">https://en.wikipedia.org/wiki/Simulated_annealing</span></font><br></span></div> Info Annealing ? WTF ? 2021-01-12 11:24:49 Simulated Annealing :: What it does 2021-01-12 10:19:56 S.A. exercise: Rocket launch revisited 2021-01-12 11:47:16 S.A. How & why it works 2021-01-12 11:38:54 Simulated Annealing :: Exercise 2021-01-12 11:41:58